بسمه تعالى





کارگاه پیشرفتهی نظریهی تابعی چگالی

محاسبهي خواص بلورهاي اپتيكي

## محاسبات ساختار الکترونی با بستهی محاسباتیِ اکسایتینگ

گرد آورنده: سید محمدحسین مدرسی، حسین کریمی (دانشکده فیزیک، دانشگاه صنعتی اصفهان)

۲۲ و ۲۳ آبان ۹۷

## فهرست مطالب

| ۱ | ۱- انجام محاسبهی خودسازگار حالت پایه LiF                   |
|---|------------------------------------------------------------|
| ۲ | ۲- فایلهای خروجی در اکسایتینگ۲- فایلهای خروجی در اکسایتینگ |
| ٤ | ۳- رسم چگالیِ حالات (DOS)                                  |
| ٦ | ٤- رسم ساختارِ نواری٤                                      |

**هدف:** در این درسنامه نحوهی انجام محاسبات ساختار نواری و چگالی حالات برای عایق LiF بیان می شود. روش کار بدین صورت است که ابتدا محاسبات خودسازگار برای بدست آمدن چگالی حالت پایه انجام می شودو پس از همگرا شدن نتایج، محاسبه چگالی حالات و ساختار نواری انجام می شود.

۱– ساختار الکترونیِ LiF: انجام محاسبهی حالت پایه

برای شروع محاسبات ساختار الکترونی ابتدا یک محاسبهی حالت پایه باید انجام گیرد به منظور انجام این محاسبه، محتویات زیر در یک فایل با نام input.xml در پوشهی کار شما قرار داده شده است. با دستور زیر در ترمینال، وارد آن شوید:

cd ~/Desktop/workshop/day1/dos-band\_LiF gedit input.xml

محتويات فايل به شكل زير قابل مشاهده است:

```
<input>
<title>LiF</title>
<structure speciespath="$EXCITINGROOT/species">
<crystal scale="7.6820">
<basevect>0.0 0.5 0.5</basevect>
<basevect>0.5 0.0 0.5</basevect>
<basevect>0.5 0.0 0.5</basevect>
<basevect>0.5 0.5 0.0</basevect>
</crystal>
<species speciesfile="Li.xml" rmt="1.6">
<atom coord="0.00 0.00 0.00"/>
</species>
<species speciesfile="F.xml" rmt="1.6">
<atom coord="0.5 0.5 0.5"/>
</species>
```

</structure>

<groundstate do="fromscratch" rgkmax="7.00" ngridk="6 6 6" gmaxvr="14" outputlevel="high" xctype="GGA\_PBE"> </groundstate>

## </input>

توجه: فراموش نکنید که در فایل input.xml با استفاده از دستور زیر، عبارت EXCITINGROOT\$ را با مقدار واقعی متغیر محیطی EXCITINGROOT\$ جایگزین کنید:

SETUP-excitingroot.sh

پس از این کار، محاسبه حالت پایه را با اجرای دستور زیر در پوشه LiF آغاز نمایید:

excitingser input.xml

در حین محاسبه فایل های خروجی ساخته می شوند که شامل تمام اطلاعات مربوط به سیستمِ ماده شما و خود محاسبه هستند. برخی از فایل های خروجی ممکن است قبلا در ابتدای محاسبه ساخته شده باشند و در حین اجرا دیگر تغییر نکنند. فایل های خروجی ساخته شده توسط اکسایتینگ در یک محاسبه استاندارد حالت پایه در بخش بعد توضیح داده شدهاند.

۲- فایلهای خروجی در اکسایتینگ

فایل خروجی اصلی در اکسایتینگک INFO.OUT است. توضیح مفصلی از محتوای این فایل را می توان در درسنامهی شمارهی یک مشاهده کرد.

| نام فايل | توضيح                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INFO.OUT | فایل خروجی اصلی که شامل اطلاعات اصلی مربوط به ساختارِ ماده، پارامترهای محاسباتی،<br>نتایج (انرژی کل، سهمهای انرژی، سهمهای بار، نیروهای اتمی، انرژی فرمی) مربوط به هر<br>چرخه و برخی موارد دیگر است. مقدار اطلاعات موجود در این فایل را می توان با استفاده از<br>عبارت outputlevel در بخش groundstate تنظیم کرد. |

فایلهای دیگری که در هنگام انجام محاسبات SCF ساخته می شوند را به طور کلی در ادامه معرفی می کنیم:

| نام فايل | توضيح |
|----------|-------|
|          |       |

| TOTENERGY.OUT | انرژی کل بر حسب هارتری [Ha]؛ هر خط متناظر با یک چرخه SCF است                   |
|---------------|--------------------------------------------------------------------------------|
| EFERMI.OUT    | انرژی فرمی بر حسب هارتری [Ha] در آخرین چرخه SCF                                |
| DMSDVEEE OUT  | ریشه میانگین مربعی انحراف در پتانسیل موثر؛ هر خط در آن نشانگر یک چرخه SCF      |
| KWSDVEIT.001  | است که از دومین چرخه شروع شده و آخرین چرخه SCf را نیز در نظر نمی گیرد.         |
|               | بیشترین تغییرات بخش IBS در نیروهای اتمی؛ هر خط در آن متناظر با یک چرخه SCF     |
| DESCEMANOUT   | است، که از دومین چرخه شروع شده و آخرین چرخه SCF را در نظر نمی گیرد. تنها       |
| DFSCFMAX.001  | زمانی نوشته میشود که نیروها به طور صریح محاسبه شده باشند (مثلا برای واهلش اتمی |
|               | .((relaxation)                                                                 |
| EIGVAL.OUT    | ویژه مقادیر (انرژیهای) نوارهای ظرفیت برای هر نقطه k و نوار                     |
| EVALCORE.OUT  | ویژه مقادیر انرژی (ترازهای انرژی) مربوط به حالتهای مغزه                        |
|               | انرژیهای خطیسازی همانطور که در فایل گونهها تنظیم شدهاند (اگر در فایل           |
|               | species.xml انرژی خطی سازی مربوطه بصورت "searchE = "false باشد) و یا توسط      |
| LINENGY.OUT   | اکسایتینگ تعیین شدهاند (اگر در فایل species.xml انرژی خطی سازی مربوطه          |
|               |                                                                                |

ساير فايل هاي خروجي، شامل اطلاعات ساختاري، تقارن ها و غيره هستند:

| نام فايل       | توضيح                                                                      |
|----------------|----------------------------------------------------------------------------|
| I ATTICE OUT   | اطلاعات مربوط به شبکه: بردارهای بسیط شبکه، حجم سلول واحد، بردارهای شبکه    |
| LATTICE.001    | وارون، و غیرہ                                                              |
|                | اطلاعات مربوط به عملگرهای تقارنیِ بلور؛ اطلاعات تقارنی بیشتر در فایل های   |
| SYMCRYS.OUT    | SYMLAT.OUT SYMMULT.OUT SYMSITE.OUT SYMT2.OUT                               |
|                | SYMINV.OUT، و SYMINV.OUT موجودند.                                          |
|                | فهرست نقاط k، مختصات آنها (بر حسب واحد بردارهای شبکه وارون)، وزنها، اندازه |
| KPOINTS.OUT    | ماتريس                                                                     |
| BONDLENGTH.OUT | فاصله های بین اتمی؛ مناسب برای بررسی درست بودن فایل ورودی                  |
| EQATOMS.OUT    | اطلاعات مربوط به برابري اتم ها به دلیل تقارن بلوري                         |

فایلهای خروجی به فرمت XML مناسب برای ذخیره داده، پایگاه داده و غیره هستند:

| نام فايل     | توضيح                                                                            |
|--------------|----------------------------------------------------------------------------------|
| atoms.xml    | نتایج محاسبات انجام شده برای اتمها به منظور آغاز کردن چگالی الکترونی             |
| · c 1        | اطلاعات موجود در این فایل مشابه با اطلاعات نوشته شده در فایل INFO.OUT است اما    |
| info.xml     | به فرمت XML نشان داده می شود.                                                    |
|              | اطلاعات ساختاری مربوط به سیستم. این اطلاعات اغلب با بخش <u>structure</u> در فایل |
| geometry.xml | ورودی شما یکسان است، اما ممکن است در تنظیمات مشخصی در عبارتهای structure         |
|              | متفاوت باشد. مثلا ممكن است "primcell = "true باشد يا "tshift = "true.            |

برخی از فایلهای خروجی به طور مستقیم قابل خواندن نیستند، زیرا بصورت فایلهای binary نوشته شده اند. این فایلها زمانی مهم هستند که بخواهیم یک محاسبه موجود را مجددا شروع کرده و یا گسترش دهیم.

| نام فايل   | توضيح                               |
|------------|-------------------------------------|
| EVALFV.OUT | ویژه مقادیر وردشی اول               |
| EVALSV.OUT | ویژه مقادیر وردشی دوم               |
| EVECFV.OUT | ویژه بردارهای وردشی اول             |
| EVECSV.OUT | ویژه بردارهای وردشی دوم             |
| OCCSV.OUT  | عدد اشغال حالتهاي وردشي دوم         |
| STATE.OUT  | توزیع چگالی و پتانسیل در فضای حقیقی |

۳- رسم چگالی حالات (DOS)

پس از تکمیل شدن اجرای حالت پایه و بدست آوردن انرژی کل مربوطه، اکنون می توانید برای بدست آوردن ویژگیهای بیشتری از سیستم اقدام کنید. یکی از اساسی ترین این ویژگیها چگالی حالات (DOS) است. نمودار چگالی حالات می تواند اطلاعاتی در مورد نوارهای انرژی سیستم در اختیارمان قرار دهد. برای انجام این محاسبه، باید تغییرات ساده زیر را در فایل ورودی input.xm اعمال کنید: 1- عبارت "skip" = ob را به بخش groundstate اضافه کنید 7- بخش properties را به بخش groundstate اضافه کنید 7- ریربخش می را به بخش groundstate اضافه کنید 7- عبارت "1" = nsmdos را به زیربخش dos اضافه کنید 1- عبارت "1" می را به بخش groundstate اضافه کنید

| <groundstate< td=""><td></td></groundstate<> |  |
|----------------------------------------------|--|
| do="skip"                                    |  |
| rgkmax="7.00"                                |  |
| ngridk="6 6 6"                               |  |
| gmaxvr="14"                                  |  |
| outputlevel="high"                           |  |
| xctype="GGA_PBE">                            |  |
|                                              |  |
| <properties></properties>                    |  |
| <dos< td=""><td></td></dos<>                 |  |
| nsmdos="1">                                  |  |
|                                              |  |
|                                              |  |
|                                              |  |

برای راحتیِ کار، بخشی که برای انجام محاسباتِ چگالی حالات باید به فایل ورودی اضافه شود در پوشهی کار شما (dos-band\_LiF) در فایلی با نام section-dos قرار داده شده است. با کپی کردن این قسمت در فایل ورودی، دقیقاً بعد از بخش <groundstate> دستور زیر را برای اجرای محاسبات dos در خط فرمان ترمینال وارد کنید:

excitingser input.xml

این بار، برنامه فایل های زیر را تولید می کند:

| نام فايل | توضيح                                |
|----------|--------------------------------------|
| TDOS.OUT | چگالی حالات کل                       |
| dos.xml  | چگالی حالات کل ذخیره شده به فرمت XML |

برای مشاهده نمودار DOS دستور زیر را اجرا نمایید:

xsltproc \$EXCITINGVISUAL/xmldos2grace.xsl dos.xml > LiF\_dos.agr

این دستور فایل LiF\_dos.agr را برای xmgrace تولید می کند. می توانید آنرا با فرمان زیر باز کنید:

xmgrace LiF\_dos.agr

نتیجه به شکل زیر نمایش داده میشود:



۴- رسم ساختارِ نواري

برای انجام محاسبه ساختار نواریLiF، بخش زیر را دقیقا بعد از بخش <groundstate> در فایل ورودی وارد کنید:

<properties> <bandstructure> <plot1d> <path steps="100"> <point coord="0.750 0.500 0.250" label="W" /> <point coord="0.500 0.500 0.500" label="L" /> <point coord="0.000 0.000 0.000" label="GAMMA"/> <point coord="0.500 0.500 0.000" label="X" /> <point coord="0.750 0.500 0.250" label="W"</pre> /> <point coord="0.750 0.375 0.375" label="K" /> </path> </plot1d> </bandstructure> </properties>

(عبارتی که برای محاسبهی dos قرار دادید را حذف کنید.)

در اینجا نیز برای راحتیِ کار، محتوات فوق در فایلی با نام section-band در پوشهی کار شما قرار داده شده است. اکنون یک بار دیگر دستور زیر را وارد کنید:

excitingser input.xml

بعد از پایان محاسبات فایل bandstructure.xml ساخته می شود که می توانید با دستور زیر فایل xmgrace آن را ایجاد کنید:

## xsltproc \$EXCITINGVISUAL/xmlband2agr.xsl bandstructure.xml

اکنون فایل LiF\_bandstructure.agr را برای xmgrace ایجاد کرده ایم، که می توانید آنرا باز کرده و به کمک xmgrace ویرایش کنید:

xmgrace LiF\_bandstructure.agr

نتيجه به شكل زير خواهد بود:

