

.... بندوم من كم كرمة وطرف دوسل بايت سال بايت و دوف باي اول على دنياريم - مالاتى كوم رديف اول -كيكن بايد بدف اان باند؛ ولود خرف چادسال، كشورا زدرارت على سلطة خراج بشود. توليد علم سمايش اين است. بالد مانى رسم كدهاي مرسدة بريد مكى است بيش بديرة بريد عكى است. بنميم . دالمد علم باديدى سلات ولد فرامديم. تقاوت شکاه دین - معنى اسلام - به علم، باشکارى كه دنيانى بلاى به علم مى تكريست. د. بسين است. ، اعلم را مى خواريم براى مداوت بشر، بای دند بشرویای شودن بای استرار حدالت و آرزوای قدی بشر. ا بالمت سمام معلم دسرى وددارد فرمطوم واسآدان دانشك تران WAA/W/W

تهیه نانوذرات مغناطیسی به روش شیمیایی

پژوهشکده نانو فناوری و مواد پیشرفته دانشگاه صنعتی اصفهان

علیرضا علافچیان د کترای شیمی

روشهای ساخت نانوذرات

• روش از بالا به پايين

• روش پايين به بالا اتم به اتم ، مولكول به ملكول

روشهای متداول ساخت نانوذرات

• رسوب فیزیکی بخار

• سایش مکانیکی

• مسیرهای شیمیایی از محلول

مزایای روشهای شیمیایی

• طراحی سطح مولکولی مواد • همگنی ترکیب شیمیایی در سطح ملکولی

- کنترل اندازه ذرات
 - کنترل توزیع اندازه
 - کنترل مورفولوژی
- کنترل اندازه متراکم شدن
- اصلاح سطح ذرات در طول سنتز و یا پس از سنتز

معایب روشهای شیمیایی

• سمي بودن

• آلودگي محصول

احتمال به هم چسبیدن ذرات

• مشکل تولید در مقیاس بزرگ

روشهای شیمیایی

- همرسوبي : (P)
- هیدروترمال(آبی حرارتی): (H)
- سولوترمال(حلالی حرارتی): (H)
 - کاهش هیدرید: (HR)
 - مايسل يا ميكروامولسيون: (M)

- تجزیه نوری: (UV)
 - سونو شیمی : (S)
 - سل ژل : (SG)
- الكتروشيميايى: (EC)
 - احتراقي

تجزیه حرارتی(تجزیه آلی فلزی): (OM) T
 تجزیه حرارتی(تجزیه کربونیل): (OC) T

1. هم رسوبی

- همرسوبی شامل وقوع همزمان هسته زایی، رشد، درشت شدن، و یا فرآیندهای تراکم است
- واکنش همرسویی شامل مراحل زیر است:
 I. محصولات نامحلول تحت شرایط فوق اشباع بالا تشکیل شده.
 II. هسته زایی یک گام کلیدی است، و تعداد زیادی از ذرات کوچک تشکیل خواهد شد.

III.فر آیندهای ثانویه مانند تجمع، به طور چشمگیری در اندازه، مورفولوژی و خواص محصولات تاثیر می گذارد.

 $xA^{y+}(aq) + yB^{x-}(aq) \leftrightarrow A_xB_y(s)$

عوامل موثر در روش هم رسوبی

• دما

- غلظت کاتیون فلزی
 فرع عامل رسوب دهنده
 (عامل رسوب نه تنها در اندازه ذرات بلکه در خلوص فاز موثر است.)
 اسید سیتریک
 اسید اگزالیک
 - سرعت همزدن محلول
 - pH•
 - M = منگنز، مس، روی و نیکل 3 Fe(OH شروع رسوب گذاری در pH برابر 2.6 2 Mn(OH رسوب در Hqبالاتر از 9.4 2 Zn (OH) در PH برابر با 7.6

Metal chlorides – hydrated or anhydrous:

Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺ Fe³⁺

<u>The reference reaction</u>: co-precipitation in aqueous medium

 $M^{2+} + 2 Fe^{3+} + 8 OH^{-} \longrightarrow [M(OH)_{2} + 2Fe(OH)_{3}]$ $\downarrow -4 H_{2}O$ MFe₂O₄

<u>Reagents</u>: $MCl_2 + 2 FeCl_3 + 8 NaOH$

a) Formation of metal chelate alkoxide complexes in parent alcohol solutions

b) Nucleation and growth of the nanoparticles

TEM Image For FeFe₂O₄

معايب و مزايا

مقادیر زیادی از ذرات را می توان سنتز کرد بسيار توسعه يافته قابليت كنترل بالا توليد محصولات بسيار پيچيده

معایب احتیاج به مهارت نه تکنولوژی نیاز به تعداد زیادی از گونه های شیمیایی و مراحل به عنوان مثال، ایجینگ، فیلتر کردن، شستشو، خشک کردن، پخت (عملیات حرارتی)

مژ يگ

2. کاهش با استفاده از هیدرید

- کاهش نمک های فلزی با استفاده از سدیم بورهیدرید
 - شیمی کاهش بسیار پیچیده است
 - نانوذرات کروی بسیار یکنواخت
- کنترل دقیق محتوای اتمسفر واکنش و آب در واکنش
- محلول های غیر آبی (دای متیل گلو کسیم، تتراهیدروفوران، و غیره)
 - (آهن، نيكل، مس) آلياژهاى 10-20 نانومتر در قطر

تصویر TEM از کبالت توسط تزریق لیتیوم triethylborohydride به محلول اولئیک اسید گرم حاوی کلرید کبالت و تثبیت کننده های آلی trioctylphosphene

3. سل ژل

- ا سل عبارت است از مخلوط کلوئیدی که ذرات جامد به صورت معلق در مایع قرار گرفته اند
 - ژل ساختار پیوسته ای از ملکول های بزرگ آلی فلزی است
 - ژل حاصل محصول هیدرولیز سل است
 - معمولا مواد اولیه با لیگاند احاطه شده است.
- معمولا از الکو کسیدهای فلزی و یا یونهای فلزی هیدرو کسیل شده استفاده می شود

مراحل فرآیند سل ژل

- آماده سازی محلول همگن بوسیله حل سازی ماده اولیه آلی -فلزی(حل کردن نمک های معدنی در آب)
 - تبدیل محلول همگن به سل با استفاده از عامل مناسب (آب خاص، HCl، NH4OH،NaOH)
 - تبدیل سل به ژل با استفاده از واکنش های پلیمراسیون
 - تبدیل ژل به محصول مانند فیلم ناز ک و قطعات حجیم به روش های متداول ذوب، خود احتراقی و غیره

عوامل موثر بر فرآیند

- نوع عامل کلیت کنندہ _____ بر سرعت ہیدرولیز موثر است (مورفولوژی و اندازہ ذرہ)
 - دمای تکلیس (مورفولوژی و اندازه ذره)
- ضریب کمپلکس دھندہ ____ در مقادیر کم ساختار آمورف و در مقادیر زیاد ساختار کریستالی است (خواص ذرات)

pH•

• نانو ذرات فریت نیکل

Ni(NO3)2 (0.4 M), Fe(NO3)2 (0.8 M), PAA pH=3 محلول شفاف سبز در HNO3

دمای 300-400 درجه دمای 50 درجه سل قهوه ای رنگ

فريت نيكل

معايب و مزايا

- سنتز در دمای کم
 - خلوص بالا
 - همگنی مناسب
- کنترل دقیق اندازه و توزیع ذرات
- امکان ساخت مواد کریستالی و غیر کریستالی جدید
 - استو کیومتری دقیق در تولید ماده نهایی
 - انعطاف پذیری تولید و کنترل محصول

معایب نمک های معدنی

- شیمی آبی یونهای فلزی تا حدودی پیچیده است
- وجود آنیونها در محلول ممکن است محصولات نا خواسته بدهد
- ایجاد رسوب از مواد اولیه معدنی مشکل است زیرا عواملی چون pH، غلظت محلول ، نحوه اضافه کردن ، میزان مخلوط شدن واکنشگرها، دما، هندسه ظرف واکنش و.. موثر است
 - طولانی بودن زمان تولید
 - عدم ساخت نانو ذرات غیر اکسیدی

معایب الکو کسیدهای فلزی

قيمت بالا

• سمى بودن

طولانی بودن زمان تولید

عدم ساخت نانو ذرات غیر اکسیدی

4. سولوترمال (حلالی - حرارتی):

- آب به عنوان یک واکنش دهنده در شرایط بحرانی تسریع روندواکنش هیدرولیز
 را ممکن می سازد
- فرایندهای دما بالا عموما باعث رشد ناخواسته دانه و تشکیل فازهای نامطلوب
 است
- استفاده از حلالهای تری اکتیل فسفین که برای تهیه نانو ذرات اکسیدی به کار گرفته می شود به دلیل نقطه جوش بالا مشکلاتی چون سمی بودن و گران بودن و کار کردن مشکل با این حلالها مطلوب نیست
- برای استفاده از یک حلال در دمایی بالاتر از نقطه جوش از روش سولوترمال
 استفاده می شود
- در یک ظرف مهر و موم شده (بمب، اتو کلاو، و غیره)، حلال می توان به درجه بالاتر نقاط جوش خود برسد.
 - مکانیزم در فرایند سولو ترمال حل کردن و تبلور مجدد است

سولوترمال (حلالي - حرارتي):

وجود محلول بخار و یا سیال تحت دما و فشار بالا اثرات زیر را دارد

نقش کاتالیزور واکنش را دارد

محیطی برای انتقال فشار، دما و انرژی مکانیکی است

محیط انجام واکنش است

میدرو کسیدها ، اکسید ها و یا نمک ها را می توان تولید کرد

مراحل توليد نانو ذرات (ترکیب شامل یونهای +An ر تر کیب شامل یونهای +B^m نسبت A/B معيين مخلوط سازى اضافه کردن کریستال کننده اعمال فشار و دما در اتو کلاو فیلتر شستشو و خشک کردن نانو پودر

سولوترمال (حلالي - حرارتي):

ماده اوليه: 2(NO3,6H2O, Ni(NO3) كريستال كننده : NaOH حلال: آب دما: 200 درجه

- زمان: 6 ساعت
- اندازه ذرات: 80 نانومتر

عوامل موثر بر فرآيند

- نوع و میزان ماده اولیه
 - دما و زمان
 - pH •
- عوامل دیگر مانند ترتیب اضافه کردن

مزایا و معایب

- امکان جوانه زنی همگن ذرات در محلول
 - توليد ذرات مشخص با خلوص بالا
 - تولید پودرهایی با فاز کریستالی بیشتر
 - توزيع يكنواخت اندازه ذرات
- چگالی بالای ذرات(کم بودن تخلخل های داخلی)
 - همگنی بالای ذرات
 - تغییر استو کیومتری
 - طولانی بودن زمان فرایند
 - عدم توانایی تولید عناصر خالص فلزی
 - وجود عوامل متعدد

5. سونو شيمي

- ٥ تشکیل حباب در داخل سیال
- ٥ دماى حدود 5000 كلوين
- o فشار بسیار زیاد (20MPa~)
 - سرعت سرمایش زیاد

Examples: sonochemical synthesis

20 kHz sonochemical processor

Fe₃O₄ nanorods prepared sonchemically in aqueous solution containing iron (II) acetate and b-cyclodextrin (TEM)

مثال واکنش های تولید Fe₃O₄

- $H_2O \rightarrow H^o + OH^o$
- $H^{o} + H^{o} \rightarrow H_{2}$
- OH ° + OH ° \rightarrow H₂O₂
- $Fe(CH_3COO)_2 \rightarrow Fe^{2+} + 2CH_3COO^-$
- Fe^{2+} + $H_2O_2 \rightarrow Fe^{3+}$ + OH^-

عوامل موثر بر فرآيند

توان امواج ماورا صوت

• نیروی جاذبه زمین

افزودنی ها و عوامل فعال سطحی

• زمان

مزایا و معایب

- نرخ توليد زياد
- قابل گنترل بودن فرآيند
- توليد نانوساختار با شكل يكنواخت خلوص بالا
 - توزیع باریک اندازه ذرات
 - امکان تولید بسیاری از نانو ذرات اکسیدی
 - امکان تودہ ای شدن نانوذرات تولیدی
 - سمی بودن مواد مصرفی

6. رسوب دهی الکترو شیمیایی

- اساس روش بر انجام واکنش های اکسیداسیون و احیا در فاز مایع توسط
 اعمال جریان و ولتاژ مناسب است
 - روش پالسى
 - ولتاژ رسوب دهی
 - زمان رسوب دھی
 - pH •
 - دما
 - غلظت الكتروليت
 - افزودنی های آلی

رسوب دهی الکترو شیمیایی

- nickel nanoparticles , 2–250 nm
 iron oxide nanoparticles , 3–8 nm
 - $Fe_{2}O_{3}$ $Fe_{3}O_{4}$ $Co_{3}O_{4}$ NiO $CoFe_{2}O_{4}$

مزایا و معایب

- سهولت و عدم پیچیدگی فرایند تولید
- امکان گنترل خواص نانوذرات بوسیله گنترل شرایط تولید
 - خلوص بالا
 - پایداری ذرات تولید شده و تنوع مواد قابل تولید
 - سرعت تولید زیادو هزینه نسبی کم
 - لزوم استفاده از زیر لایه مناسب
 - لزوم حذف زير لايه
 - امکان توده ای شدن پس از حذف زیر لایه
- سمی بودن الکترولیت های مورد استفاده عدم کارایی در تولید موادی که پتاسیل احیا آنها بالاست

7. ميكرو امولسيون

میکروامولسیون مخلوطی از دو مایع آب در روغن و یا بالعکس است که یکی در دیگری به صورت قطرات ریز پخش شده است

•cetyltrimethylammonium bromide (CTAB)
• sodium dodecylsulphate (SDS)
•polyethoxylates (Igepal, Brij, Tween, C₁₂E₅)

(Mn,Zn)Fe₂O₄, (Ni,Zn)Fe₂O₄, ZnFe₂O₄, and BaFe₁₂O₁9 >5 and 50 nm >spheroidal morphology >typical size variations of 10%, امکان کنترل دقیق اندازه ذرات و توزیع آن

ميكرو امولسيون

TEM of KMnF₃ nanoparticles synthesised using reverse micelles

8. سنتز احتراقی دمای پایین

سل ژل احتراقی، خوداحتراقی نیترات-سیترات، پیرولیز سل ژل

نیترات فلزات

- نیترات آمونیوم ویا آمونیوم پر کلرات
- یک سوخت آلی مانند اسید سیتریک، اوره و یا کربوهیدرازید
- عموما از سیتریک اسید استفاده می شود زیرا نتنها به عنوان ماده احیا کننده (سوخت) عمل می کند بلکه عامل کیلیت کننده نیز هست

مراحل توليد نانو ذرات نمکهای نیترات اسيد سيتريک تنظيم PH توسط آمونيوم حرارت دادن تا شفاف شدن ادامه حرارت واكنش احتراق همراه با دود يا شعله کلسینه کردن در دمای مطلوب

عوامل موثر بر فرآيند

- مواد اوليه
- نسبت مواد اولیه به سوخت آلی هرچه سوخت الی کمتر ذرات درشتر
 pH محلول
 افزایش pH ذرات درشت تر
 دمای کلسینه کردن

9. تجزیه حرارتی و تجزیه نوری

- یکی از ساده ترین روش برای آماده نانوذرات تجزیه از پیش سازهای آلی فلزی است. این تجزیه ممکن است توسط گرما و یا نور (تجزیه شیمیایی بر اثر نیروی تابشی) باشد
- دمای تجزیه کنترل رشد نانوذرات را بر عهده دارد. از آنجا که اندازه و مورفولوژی در خواص نانوذرات اثردارد ، کنترل این خواص هدف اصلی است

Compound*	Method	Size, nm	Morphology	Characterisation ‡	Ref.
Fe	PPC	<200	Agglomerates	TEM, XRD, ICP, SQUID	355
α-Fe (β-FeOOH)	PPC and M	30-180	Needles	TEM, XRD, VSM	356
Fe (Fe ₃ O ₄)	PPC	20-200	Spheres	TEM, XRD, FTIR, VSM, ACSus	357
α-FeOOH	PPC	7-48		XRD, BET, MS	358
α-FeOOH	PPC	20-200	Needles	TEM, XRD, FTIR	359
α-FeOOH	PPC	10-150	Needles	SEM, XRD, SAXS, SQUID,	360
β-FeOOH	PPC	10-450	Needles	TEM, XRD, EXAFS, BET, ICP	361
y-FeOOH	PPC	<400	Needles	TEM, XRD, ICP, FTIR	362
δ-FeOOH	PPC	10-100	Platelets	TEM, XRD, FTIR	363
MgFe ₂ O ₄	PPC	5-20		XRD, ND, ICP, MS, SQUID	319, 339
MnFe ₂ O ₄	PPC	~ 40	Spheres?	TEM, XRD, ND, EELS	254
MnFe ₂ O ₄	PPC	4-15	Spheres	TEM, XRD, BET, DSC, SQUID	327
MnFe ₂ O ₄	PPC	7-25	Spheres	TEM, XRD, magnetic fluxmeter	25
MnFe ₂ O ₄	PPC	5–15	Spheres	TEM, XRD, VSM	26
Fe ₃ O ₄	PPC	<80	Spheres	TEM, XRD, ICP, FTIR	362
Fe ₃ O ₄	PPC	<10	Spheres	TEM, XRD, SQUID, ACSus	364
Fe ₃ O ₄ /surfactant	PPC	<10	Spheres	TEM, XRD, SQUID, ACSus	320

Compound*	Method†	Size, nm	Morphology	Characterisation‡	Ref.
Fe ₃ O ₄ , CoFe ₂ O ₄	PPC	3–15	Spheres, self-assembled (SA)	TEM, XRD, XPS, SQUID	365
CoFe ₂ O ₄	PPC	7–12	Spheres	TEM, VSM	24
CoFe ₂ O ₄	PPC	5-20	Spheres	TEM, XRD, magnetic fluxmeter	25
CoFe ₂ O ₄	PPC	5-130	Spheres, needles	TEM, XRD, VSM	26
CoFe ₂ O ₄	PPC	600-1000	Spheres	TEM, XRD, XPS, FTIR, AA, magnetic susceptibility	366
Co1-xNixFe2O4	PPC	<30		TEM, XRD, VSM	367
Co1-xMxFe2O4 (M=Gd, Pr)	PPC	6-87		XRD, TGA, VSM	368
NiFe ₂ O ₄	PPC	4-15		XRD, VSM, MS	369
NiFe ₂ O ₄	PPC	50-200	Spheres	SEM, XRD, TGA, BET	370
NiFe ₂ O ₄	PPC	4-6		XRD, SQUID	371
NiFe ₂ O ₄	PPC	3-5	Spheres	TEM, XRD, magnetic birefringence	372
NiFe ₂ O ₄	PPC	700-900	Spheres	TEM, UVvis, Zeta potential, VSM?	373
ZnFe ₂ O ₄	PPC	<100	Spheres	SEM, XRD, TGA	374
Mn ₁ _Zn ₂ Fe ₂ O ₄	PPC	3-20		TEM, XRD, TGA, FTIR, ESR, SANS, VSM	28, 375
MnoesZno 34Fe 2O4	PPC	~9		TEM, XRD, AA, FMR, VSM	348
Ni _{1-v} Zn _v Fe ₂ O ₄	PPC	10-20	Spheres	TEM, XRD, AA, FTIR, VSM	29
Ni _{1-v} Zn _v Fe ₂ O ₄ /α-Fe/α-Fe ₂ O ₃	PPC	~20	Spheres	TEM, SEM, XRD, MS, VSM	376
NigeZnogEegO4	PPC	14-1000	Spheres, applomerates	SEM, XBD, VSM	377
Nio sZno sEeoO4	PPC	~9	opholoo, aggiolholatoo	TEM, XRD, AA, EMB, VSM	348
α-FeaΩo/α-FeaΩo	PPC	20-50	Spheres	SEM XBD	378
1-FeaOa	PPC	4-12	opholos	XBD ND SANS EMB	350
1-FeaOa	PPC	2_9	Spheres	TEM XBD	379
1-Fe ₂ O ₂	PPC	6-12	Spheres	TEM, VSM	24
1-FeaOa	PPC	2-15	Spheres	TEM XBD AA DLS SOUID	380
7-F 0203	PPC	<100	Platelets rode	TEM XRD XPS MS	381
LiFerOn	PPC	~ 10	Tiatelets, Tods	XBD ETIB VSM	382
SrEeroOre	PPC	35_40	Spheres	TEM XBD TGA DTA SOLID	383
BaEeroOro	PPC	250-1000	oprieres	SEM XRD TGA DTA XPS	384
BaFourOur	PPC	100 500	Hexagonal platelets, agglomorates	SEM, XID, TOX, DTX, XIS	251
BaFe O	PPC	100-3000	Hexagonal platelets, agglomerates	SEM, ARD, MS SEM, YRD, DTA, VSM	395
BaFe ₁₂ O ₁₉	PPC	10.50	Hexagonal platelets, aggiomerates	TEM VED MS VSM	20
BaFe ₁₂ O ₁₉	PPC	10-50	 Heverenel platelete, eralemerates	HETEM TEM YED TOA DTA Daman VSM	20
BaFe ₁₂ O ₁₉	PPC	10-500	Hexagonal platelets, aggiomerates	SEM VED TGA DTA VSM	380
BaFe ₁₂ O ₁₉	PPC	400-3000	Pletelete	JEM, XRD, TGA, DTA, VSM	307
(Eq Ni Cu)		10-3000	Platelets	TEM, ARD, TGA, VSM	386
(Fe,N,Cu)		10-200	Spheres	TEM, ARD, TMA	38
Fe, γ-Fe ₂ O ₃	HR	~ 40	vvires Coheree	TEM, HRTEM, SEM, XRD, VSM, MS	389
68	HR	20-100	Spheres	TEM, XRD, ICP	390
6	HR	<40	Aggiomerates	TEM, XRD, ICP, DSC, BET, SQUID	32
	HR	3-8	Spheres, SA	TEM, XRD, SAXS, SQUID	391
COB_2 , $COFe_2O_4$, Fe_3O_4 , γ -Fe ₂ O ₃	HR	2-5	Spheres	TEM, XANES, SAXS	56
N	HR	25-30		XHD, ICP	34
	HR	2-5	Spheres	TEM, XRD, UVVIS	392
COPT $(L1_0)$	HR	20-25	Spheres	TEM, XRD, ICP, EDX, VSM, SQUID	393
(Fe,Zr,B) (Fe ₃ B) (ZrO ₂)	HR	5-15		SEM, XRD, EDX, EXAFS, AA, FTIR, DSC, MS, SQUID	394
(M,B) (M=Fe, Co, Ni, Mn)	HR	7–12		XRD, MS, ACSus	35

f_{eb} NB) HR <50	Compound*	Method†	Size, nm	Morphology	Characterisation ‡	Ref.
If eB Prop., Cr, Bay TEM, XPC, SET, ICP, MS 395 Febra, Cr, Bay Anorphous HR 3-200 Spheres TEM, XPC, MS, SOUD 397 398 Co, Bay MRD, TAS, SOUD HR 3-200 Spheres TEM, XPD, MS, SOUD 397 398 Co HR -40 Spheres SA SEM, MS, SOUD 40 c-Co HR -5 Spheres, SA HRTEM, XPD, SOUD 41 c-Co HR -11 Spheres, SA HRTEM, XPD, SOUD 39 MFe;OA, HR -5 Spheres, SA HRTEM, XPD, SOUD 401 c-Co HR -5 Spheres, polyhedra TEM, XPD, DAA 400 MFe;OA, H -540 Spheres TEM, XPD, DAA 401 Fe,OA H 30-200 Polyhedra TEM, XPD, DAA 402 Fe,OA H 50-50 Spheres TEM, XPD, TER, TGA, VSM 403 Coffe,OA H 22-56 Spheres TEM, XPD,	(Fe,Ni,B)	HR	<50	Agglomerates	TEM, MS	36
Feg., C., E., S. HR 2-200 Spheres TEM, XRD, TGA, MS, SOUID 396 Co.B. Janorphous HR	(Fe,B) amorphous	HR	50-150	Spheres	TEM, DSC, BET, ICP, MS	395
Fead-Act, Bay amorphous HR 3-200 Spheres, agglomerates TEM. XPD, MS, SQUID 397, 388 c-Co HR ~5 Spheres, SA EM. MEN, XPD, SQUID 40 c-Co HR ~11 Spheres, SA HFIEM, XPD, SQUID 41 c-Co HR ~11 Spheres, SA HFIEM, XPD, SQUID 39 c-Co HR ~10 Spheres, SA HFIEM, XPD, SQUID 39 x-Co HR ~10 Spheres, SA HFIEM, XPD, SQUID 39 Mr6p-Qu, HR ~50 Spheres, SA HEM, XPD, SQUID 40 x-Co HR ~50 Spheres, SA HEM, XPD, SQUID 40 fsQu H ~50 Spheres TEM, XPD, DET 40 FsQu H 30-20 Spheres TEM, XPD, DET 40 fsQu H 52-50 Spheres TEM, XPD, CA, SQUID 40 CofepQu H 20-10 HegoU, MA, AD, AD, AD, AD, AD, AD, AD, AD, AD, A	Fean-xCrxB20	HR	20-200	Spheres	TEM, XRD, TGA, MS, SQUID	396
Colo HR ~40 Spheres Ten, XPD, XPS, ICP, MS 399 cO HR ~5 Spheres, SA SEM. TEM. XPD, SQUD0 40 c-Co HR ~11 Spheres, SA SPM. TEM, XPD, SQUD0 40 c-Co HR ~11 Spheres, SA HFEM, XPD, SQUD0 40 c-Co HR ~5 Spheres, SA HFEM, XPD, SQUD0 40 c-Co HR ~5 Spheres, SA TEM, XPD, SQUD0 40 MrFe ₂ O ₄ H ~50 Spheres, Delyhedra TEM, MD, SQUD 40 Fe ₀ O ₄ H ~540 Polyhedra TEM, MD, CA, VSM 40 Fe ₀ O ₄ H Sobres, Delyhedra TEM, MD, CA, VSM 40 40 NFe ₀ O ₄ H ~400 Spheres, Delyhedra TEM, MD, CA, VSM 40 40 NFe ₀ O ₄ H ~400 Spheres TEM, MD, CA, VSM 40 40 NFe ₀ O ₄ H ~400 Spheres Polyhedra TEM,	Fean-xCrxB20 amorphous	HR	3-200	Spheres, agglomerates	TEM, XRD, MS, SQUID	397, 398
CO HR < 5 Spheres, SA ERM, TEM, SQUID 40 cO HR -11 Spheres, SA HPTEM, XRD 41 cCo HR 7-10 Spheres, SA HPTEM, XRD, SQUID 34 cCo HR -5 Spheres, SA HPTEM, XRD, SQUID 400 MrFeyOq, H -560 Spheres, polyhedra TEM, MS, SQUID 400 MrFeyOq, H -560 Spheres, polyhedra TEM, MS, SQUID 401 FegOq, H 30-200 Polyhedra TEM, MS, SQUID 401 FegOq, H 12-59 TEM, XRD, FRR, TGA, VSM 403 CoFe ₂ Oq, H 20-100 Polyhedra TEM, XRD, TAL, EDAX, SQUID 401 CoFe ₂ Oq, H 2-25 Spheres TEM, XRD, TAL, EDAX, SQUID 402 NFe ₂ Oq, H 2-010 Polyhedra TEM, XRD, AA, EDAX, SQUID 401 MFe ₂ Oq, H 2-020 Spheres TEM, XRD, AA, TA, TA, AA, TA, AA, TA, AA, TA, AA, TA, A	(Co.B) amorphous	HB	~40	Spheres	TEM, XRD, XPS, ICP, MS	399
φCo HR +11 Spheres, SA HRTEM, XRD HTEM, XRD HTEM, XRD HTEM, XRD HTEM, XRD HTEM, XRD HTEM, XRD Solution 345 φCo HR +5 Spheres, SA HTEM, XRD SOUID 345 φCo HR +5 Spheres, SA TEM, XRD, SOUID 345 MrEpQ, H -540 Spheres, polyhedra TEM, MS, SOUID 401 Feq.Q, H -3200 Polyhedra TEM, XRD, FIR, TGA, VSM 402 Feq.Q, H 20-150 Spheres SEM, XRD, BET 46 401 CoFe,Q, H 2-25 Spheres TEM, MS, SOUID 401 402 NFe,Q, H 2-100 Polyhedra TEM, MS, SOUD 404 402 NFe,Q, H 3-10 TEM, XRD, DAA, TGA, LOA, SOUID 401 Mre,Q,Q, H 2-80 Polyhedra TEM, XRD, AA, DTA, TGA, AES, FB 48 Mn, _27,Fe,Q,A H 2-90 Poly	ε-Co	HB	~5	Spheres, SA	SEM, TEM, XRD, SQUID	40
μ ² Co HR 7-10 Spheres, SA HTTEM, XRD, SQUID 345 vCo HR ~5 Spheres, SA TEM, XRD 39 MFre ₂ O ₄ H ~25 XFD, FB 400 MFre ₂ O ₄ H ~340 Polyhedra TEM, MS, SOUID 401 Fe ₃ O ₄ H 30-200 Polyhedra TEM, XRD, AA 402 Fe ₃ O ₄ H 50-200 Polyhedra TEM, XRD, AA 402 Fe ₃ O ₄ H 20-50 Spheres, polyhedra TEM, XRD, AA 402 Fe ₃ O ₄ H 12-59 TEM, XRD, TAK, SQUID 401 CoFe ₂ O ₄ H 2-205 Spheres, polyhedra TEM, XRD, AA, SQUID 404 Nife ₂ O ₄ H 2-206 Polyhedra TEM, XRD, AA, TDA, SQUID 401 ZnFe ₂ O ₄ H 2-00 Polyhedra TEM, XRD, AA, DTA, TGA, AES, FB 48 MinZn, Fe ₂ O ₄ H 5-200 Spheres, polyhedra TEM, XRD, AA, DTA, TGA, AES, FB </td <td>e-Co</td> <td>HB</td> <td>~11</td> <td>Spheres, SA</td> <td>HRTEM, XRD</td> <td>41</td>	e-Co	HB	~11	Spheres, SA	HRTEM, XRD	41
a^{-0} HR ~ 5 Spheres, SA TEM, XPD 39 MFrepQu H1 ~ 540 Spheres, polyhedra TEM, MS, SOUID 401 FegQu H1 ~ 540 Spheres, polyhedra TEM, MS, SOUID 401 FegQu H1 ~ 340 Polyhedra TEM, MS, SOUID 401 FegQu H1 ~ 340 Polyhedra TEM, MS, SOUID 401 FegQu H1 $5-250$ Spheres SEM, XPD, FBF, TGA, VSM 403 CoFegQu H1 ~ 400 Spheres, polyhedra TEM, MS, SOUID 404 NIFeQu H1 ~ 400 Spheres TEM, MS, SOUID 404 NIFeQu H1 ~ 400 Spheres TEM, MS, SOUID 401 NIFeQu H1 ~ 680 Polyhedra TEM, MS, SOUID 401 NIFeQu H1 ~ 310 XPD, VSM 402 NIFeQu H1 ~ 400 Spheres XPD, VSM 402 NIF	e-Co	HB	7-10	Spheres, SA	HRTEM, XRD, SQUID	345
MPEp_Q, H ~25 Horson XED, FB 00 MnFeyQ, H ~540 Spheres, polyhedra TEM, MS, SOUID 401 FeyQ, H 30-200 Polyhedra TEM, MS, SOUID 401 FeyQ, H 30-200 Polyhedra TEM, MS, SOUID 401 FeyQ, H 50-50 Spheres SEM, MD, AA 402 FeyQ, H 12-59 TEM, MD, AA, SOUID 401 CoFe;Q, H 2-25 Spheres TEM, MD, TGA, EDAX, SOUID 404 NiFe;Q, H 2-26 Spheres TEM, MD, TGA, EDAX, SOUID 401 MreigQ, (M=Cu, Ni, Zn) H 3-10 XED, VSM 402 MreigQ, (M=Cu, Ni, Zn) H 3-10 XED, VSM 401 MreigQ, (M=Cu, Ni, Zn) H 3-10 XED, VSM 402 MreigQ, (M=Cu, Ni, Zn) H 2-080 Polyhedra TEM, MD, AA, TA, TGA, AES, FB 402 <	e-Co	HB	~5	Spheres, SA	TEM, XRD	39
MirFa ₂ O ₄ H ~ 540 Spheres, polyhedra TEM, MS, SOUID 401 Fe ₃ O ₄ H ~ 340 Polyhedra TEM, MS, SOUID 401 Fe ₃ O ₄ H 30-200 Polyhedra TEM, MS, SOUID 402 Fe ₃ O ₄ H 50-150 Spheres SEM, XPD, BET 462 Fe ₃ O ₄ H 50-150 Spheres SEM, XPD, BET 463 CoFe ₂ O ₄ H -400 Spheres, polyhedra TEM, MS, SOUID 401 CoFe ₂ O ₄ H -265 Spheres TEM, MS, SOUID 401 NIFe ₂ O ₄ H 20-100 Polyhedra TEM, MS, SOUID 401 NIFe ₂ O ₄ H -310 XPD, VSM 402 Zife ₂ O ₄ H 20-80 Polyhedra TEM, MS, SOUID 401 Min2D, Fe ₂ O ₄ H 5-200 Spheres, polyhedra TEM, SMD, XMM, AD, AD, TA, TGA, AES, FB 48 Min2D, Fe ₂ O ₄ H 0-017 RD, AD, CM, PCA, AD, A	MnEe ₂ O ₄	Н	~25	-p,	XBD_FB	400
Tendod Tendod Tendod Tendod Tendod Tendod Alternation Alternation FegO4 H 30-200 Polyhedra TEM, MS, SOUID 401 FegO4 H 50-150 Spheres TEM, MS, SOUID 401 FegO4 H 12-59 TEM, KND, FIR, TGA, VSM 403 CoFegO4 H 5-25 Spheres, polyhedra TEM, MS, SOUID 401 CoFegO4 H 20-100 Polyhedra TEM, MS, SOUID 401 NiFegO4 H -680 Polyhedra TEM, MS, SOUID 401 NiFegO4 H -680 Polyhedra TEM, MS, SOUID 401 MreyO4, (MI=Cu, N, Zn) H 3-10 XPD, VSM 402 NiFegO4 H -010 XPD, VSM 401 Mru-Zn, FegO4 H 20-80 Polyhedra TEM, MD, AA, ND, AA 402 Mru-Zn, FegO4 H 50-200 Spheres, Jarge æ polyhedra TEM, SED, XND, AA, ALGA, AES, FB 48 Mru-Zn, FegO4 H 50-200 Spheres, Jarge æ poly	MnEe ₂ O ₄	н	~540	Spheres, polyhedra	TEM MS. SOUID	401
Code Formula Ten No. Code Code Code FegO4 H 30–200 Polyhedra TEM, XRD, BET 46 FegO4 H 12–59 TEM, XRD, DET 46 CoFegO4 H 2–50 TEM, XRD, TEN, TGA, VSM 403 CoFegO4 H 2–25 Spheres, polyhedra TEM, XRD, TGA, EDAX, SQUID 401 CoFegO4 H 2–26 Spheres TEM, XRD, AG, EDAX, SQUID 404 NFegO4 H 2–010 Polyhedra TEM, XRD, CAG, EDAX, SQUID 401 NFegO4 H 3–10 XPD, VSM 405 ZrfegO4 H 2–00 Polyhedra TEM, XRD, AA 402 Mn-,Zn, FegO4 H 10–17 XPD, USM 406 Mn-,Zn, FegO4 H 10–17 XPD, USM 407 Ni,Zn, FegO4 H 50–200 Spheres SEM, XPD, AA 407 StFegO9 H 100–170 </td <td>FeaO.</td> <td>н</td> <td>~ 340</td> <td>Polyhedra</td> <td>TEM MS SOLID</td> <td>401</td>	FeaO.	н	~ 340	Polyhedra	TEM MS SOLID	401
Code Construct Con	Fe ₂ O ₄	н	30-200	Polyhedra	TEM, MO, OGOID	402
Head In D-Tot Operation Defended Defende <thdefende< th=""> <thdefended< <="" td=""><td>Fe-O:</td><td>н</td><td>50-150</td><td>Spheres</td><td>SEM XRD BET</td><td>46</td></thdefended<></thdefende<>	Fe-O:	н	50-150	Spheres	SEM XRD BET	46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe-O	Н	12_59	opheles	TEM YED FTIR TGA VSM	403
ConfegO4 H 5-400 Spheres TEM, MS, SOUD 401 NiFegO4 H 2-25 Spheres TEM, XRD, TGA, EDAX, SQUID 404 NiFegO4 H 2-680 Polyhedra TEM, MS, SQUID 401 MFegO4 H 2-680 Polyhedra TEM, MS, SQUID 401 MFegO4 H 2-300 Polyhedra TEM, MS, SQUID 405 ZnFegO4 H 2-800 Polyhedra TEM, SEM, XRD, AA 402 Mn1-,x7n,FegO4 H 10-17 XRD, ICA ACA 402 Mn1-,x7n,FegO4 H 10-17 XRD, ICA ACA 406 Mn1-,x7n,FegO4 H 40-70 Spheres SEM, XRD, VSM 407 Ni-,x7n,FegO4 H 40-70 Spheres SEM, XRD, VSM 407 Ni-,x7n,FegO4 H 50-2000 Hexagonal platelsts SEM, XRD, VA, VSM 409 SiFe12O19 H 50-400 Hexagonal platelsts SEM, XRD, VA, VSM	CoEo. O.	Н	- 400	Sphares, polyhodra	TEM, MS, SOUD	401
Corregod Filters Term, ARD, TOAK, EDA, SOUD 404 NifegOd H 20-100 Polyhedra TEM, ARD, IAA, EDA, SOUD 401 NifegOd H ~680 Polyhedra TEM, MR, SOUD 401 NifegOd H 3-10 XRD, VSM 405 ZnFegOd, H -300 Polyhedra TEM, KRD, AA, DTA, TGA, AES, FB 48 Mn_1,_Zn,FegOd, H 5-200 Spheres, polyhedra TEM, XRD, AA, DTA, TGA, AES, FB 48 Mn_1,_Zn,FegOd, H 10-17 XRD, ICP 406 Nn_1,_Zn,FegOd, H 40-70 Spheres, large α polyhedra TEM, XRD, AA, DTA, TGA, AES, FB 48 SFFeigOn, H 50-2000 Hexagonal platelets SEM, XRD, VSM 407 SFeigOn, H 50-2000 Hexagonal platelets SEM, XRD, VSM 408 SFeigOn, H 50-3000 Hexagonal platelets SEM, XRD 409 SFeigOn, H 50-3000 Hexagonal platelets SEM,			~ 400	Spheres	TEM, MS, SQUID	401
Initing 204 Initial Initia Initial <thinitial< th=""></thinitial<>	NIEG-O		0-20	Bolyhodro	TEM, XRD, TGA, EDAA, SQUID	404
Nimegod In ~ 000 Polyhedra Tex, MS, SOUD 401 ZhFegOd, H 3-10 XRD, VSM 405 ZhFegOd, H 20-80 Polyhedra SEM, XRD, EDAX, VSM 47 ZhFegOd, H 20-80 Polyhedra TEM, XRD, AA 402 Mn1-,_Zn,FegOd, H 10-17 XRD, VSM 406 Mn1-,_Zn,FegOd, H 40-70 Spheres, polyhedra TEM, XRD, VSM 406 SrFe12O19 H 40-70 Spheres SEM, XRD, VSM 407 SrFe12O19 H 50-2000 Hexagonal platelets SEM, XRD, VSM 408 SrFe12O19 H 50-2000 Hexagonal platelets SEM, XRD, VSM 409 BaFe12O19 H 50-8000 Hexagonal platelets SEM, XRD, VSM 411 BaFe12O19 H 50-800 Hexagonal platelets SEM, XRD, VSM 411 BaFe12O19 H 100-1900 Hexagonal platelets SEM, XRD, SEM, XRD, SEM, VSM	NECO	П	20-100	Polyhedra	TEM, AND, AA	402
Mine Qu, (Mi = Ou, M, 21) In S-10 AnD, VSM 405 ZhFe ₂ O ₄ H 2-30 Polyhedral SEM, XPD, EDAX, VSM 47 ZhFe ₂ O ₄ H 20-80 Polyhedra TEM, XPD, AA 402 Mn _{1-x} Zn, Fe ₂ O ₄ H 5-200 Spheres, polyhedra TEM, SEM, XRD, AA, DTA, TGA, AES, FB 48 Mn _{1-x} Zn, Fe ₂ O ₄ H 10-17 XPD, ICP 406 Mn _{1-x} Zn, Fe ₂ O ₄ H 40-70 Spheres, large <i>x</i> polyhedra TEM, XPD, VSM 407 Ni _{1-x} Zn, Fe ₂ O ₄ H 40-70 Spheres SEM, XPD, VSM 408 Siffe ₁₂ O ₁₉ H 50-2000 Hexagonal platelst SEM, XPD, VA, VSM 49 BaFe ₁₂ O ₁₉ H 50-2000 Hexagonal platelst SEM, XPD, VSM 410 BaFe ₁₂ O ₁₉ H 50-400 Hexagonal platelst SEM, XPD, VSM 411 BaFe ₁₂ O ₁₉ H 50-1500 Hexagonal platelst SEM, XPD SEM, XPD SA, VSM 50 <	ME_2O_4		~080	Polyhedra	TEM, MS, SQUID	401
ZhPe2v4 H ~ 300 Polyhedra SEM, ARD, EDA, VSM 47 ZhPe2v4 H 20-80 Polyhedra TEM, XPD, AA, DTA, TGA, AES, FB 402 Mn1-x2n,Fe2v4 H 10-17 XRD, VSM 406 Mn1-x2n,Fe2v4 H 10-17 XRD, VSM 407 Nin-x2n,Fe2v4 H 40-70 Spheres, large α polyhedra TEM, XPD, VSM 407 Nin-x2n,Fe2v4 H 40-70 Spheres SEM, XPD, VSM 408 Siffe12v019 H 50-2000 Hexagonal platelts SEM, XPD, VSM 408 BaFe1zv19 H 100-1900 Hexagonal platelts SEM, XPD, VSM 410 BaFe1zv19 H 100-1900 Hexagonal platelts SEM, XPD, VSM 410 BaFe1zv19 H 200-1000 Hexagonal platelts SEM, XPD, VSM 411 BaFe1zv19 H 500-1000 Hexagonal platelts SEM, XPD, VSM 412 BaFe1zv19 H 150-1500 Hexagonal platelts <td>MFe_2O_4 ($M=Ou$, NI, Zh)</td> <td></td> <td>3-10</td> <td> Deluke duel</td> <td>ARD, VOM</td> <td>405</td>	MFe_2O_4 ($M=Ou$, NI , Zh)		3-10	 Deluke duel	ARD, VOM	405
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		н	~300	Polynedral	SEM, XRD, EDAX, VSM	47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		н	20-80	Polynedra	TEM, XRD, AA	402
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mn _{1-x} Zn _x Fe ₂ O ₄	н	5-200	Spheres, polyhedra	TEM, SEM, XRD, AA, DTA, TGA, AES, FB	48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn _{1-x} Zn _x Fe ₂ O ₄	н	10–17		XRD, ICP	406
N1- $_x 2n_c Fe_2 O_4$ H40-70SpheresSEM, XRD, VSM408SFFe1_2 O_{19}H50-2000Hexagonal plateletsSEM, XRD, AA, VSM49BaFe1_2 O_{19}H8-30SpheresTEM, XRD, DTA, EPR409BaFe1_2 O_{19}H100-1900Hexagonal plateletsSEM, XRD, VSM410BaFe1_2 O_{19}H50-800Hexagonal plateletsSEM, XRD, VSM51BaFe1_2 O_{19}H200-1000Hexagonal plateletsSEM, XRD, BET, VSM411BaFe1_2 O_{19}H150-1500Hexagonal plateletsSEM, XRD, DLS, DTA, TGA, VSM50BaFe1_2 O_{19}H150-10000Hexagonal plateletsTEM, SRD, DLS, DTA, TGA, VSM50BaFe1_2 O_{19}H00-200Hexagonal plateletsTEM, XRD52BaFe1_2 O_{19}H00-200Hexagonal plateletsTEM, XRD52BaFe1_2 O_{19}H00-200Polyhedra, spheresTEM, XRD, VSM'44REFe0_3 /RE_3 Fe_5 O_{12} (RE=Er-Lu)H<80	Mn _{1-x} Zn _x Fe ₂ O ₄ /α-Fe ₂ O ₃	н	<12	Spheres, large a polyhedra	TEM, XRD, VSM	407
Shf-erg20rg H 50-2000 Hexagonal platelets SEM, XPD, AA, VSM 49 Shf-erg20rg H 8-30 Spheres TEM, XPD, DTA, EPR 409 BaFerg20rg H 100-1900 Hexagonal platelets SEM, XPD, DTA, EPR 410 BaFerg20rg H 50-800 Hexagonal platelets SEM, XPD, VSM 51 BaFerg20rg H 200-1000 Hexagonal platelets SEM, XPD, VSM 411 BaFerg20rg H 150-1500 Hexagonal platelets SEM, XPD, DLS, DTA, TGA, VSM 412 BaFerg20rg H 150-1500 Hexagonal platelets SEM, XPD, DLS, DTA, TGA, VSM 50 BaFerg20rg H 100-200 Hexagonal platelets TEM, XRD SD, VSM? 52 BaFerg20rg H 100-200 Hexagonal platelets TEM, XRD SD SA BaFerg20rg H 100-200 Hexagonal platelets TEM, XRD SA SE BaFerg20rg H 100-100 Spheres TEM, XRD SA S	Ni _{1-x} Zn _x Fe ₂ O ₄	н	40-70	Spheres	SEM, XRD, VSM	408
SrFe ₁₂ O ₁₉ H 8-30 Spheres TEM, XRD, DTA, EPR 409 BaFe ₁₂ O ₁₉ H 100-1900 Hexagonal platelets SEM, XRD 410 BaFe ₁₂ O ₁₉ H 50-800 Hexagonal platelets SEM, XRD, VSM 51 BaFe ₁₂ O ₁₉ H 200-1000 Hexagonal platelets SEM, XRD, DET, VSM 411 BaFe ₁₂ O ₁₉ H 150-1500 Hexagonal platelets SEM, XRD, DET, VSM 412 BaFe ₁₂ O ₁₉ H 150-1000 Hexagonal platelets SEM, XRD, DLS, DTA, TGA, VSM 50 BaFe ₁₂ O ₁₉ H 100-200 Hexagonal platelets TEM, XRD SD, VSM? 413-415 BaFe ₁₂ O ₁₉ H 100-200 Hexagonal platelets TEM, XRD, VSM? 52 BaFe ₁₂ O ₁₉ /Ba ₅ Fe ₆ O ₁₇ H 100-200 Hexagonal platelets TEM, XRD, VSM? 44 REFeO ₃ /RE ₃ Fe ₆ O ₁₇ H 100-200 Polyhedra, spheres TEM, XRD, VSM? 62 Fe M 10-100 Spheres TEM, XRD, ELS, AGM, MS 62	SrFe ₁₂ O ₁₉	н	50-2000	Hexagonal platelets	SEM, XRD, AA, VSM	49
BaFe12O19 H 100–1900 Hexagonal platelets SEM, XRD 410 BaFe12O19 H 50–800 Hexagonal platelets SEM, XRD, VSM 51 BaFe12O19 H 200–1000 Hexagonal platelets SEM, XRD, DET, VSM 411 BaFe12O19 H 150–1500 Hexagonal platelets SEM, XRD, DET, VSM 412 BaFe12O19 H 150–10000 Hexagonal platelets, needles TEM, SEM, XRD, DLS, DTA, TGA, VSM 50 BaFe12O19 H 40–700 Hexagonal platelets TEM, XRD 52 BaFe12O19 H 100–200 Hexagonal platelets TEM, XRD 52 BaFe12O19/BagFe6017 H 100–200 Hexagonal platelets TEM, XRD, VSM? 44 REFeO3/RE3Fe6_012 RE = er_Lu) H <100-200	SrFe ₁₂ O ₁₉	Н	8–30	Spheres	TEM, XRD, DTA, EPR	409
BaFe12O19H50-800Hexagonal plateletsSEM, XRD, VSM51BaFe12O19H200-1000Hexagonal plateletsSEM, XRDXRD411BaFe12O19H150-1500Hexagonal plateletsSEM, XRD, BET, VSM, TGA, VSM412BaFe12O19H150-1000Hexagonal platelets, needlesTEM, SEM, XRD, DLS, DTA, TGA, VSM50BaFe12O19H40-700Hexagonal platelets, needlesTEM, XRDTEM, XRD413-415BaFe12O19H100-200Hexagonal plateletsTEM, XRD52BaFe12O19/BasFe8O17H<100-0	BaFe ₁₂ O ₁₉	Н	100-1900	Hexagonal platelets	SEM, XRD	410
BaFe12019H200-1000Hexagonal plateletsSEM, XRD411BaFe12019H150-1500Hexagonal plateletsSEM, XRD, BET, VSM412BaFe12019H150-1000Hexagonal platelets, needlesTEM, SEM, XRD, DLS, DTA, TGA, VSM50BaFe12019H40-700Hexagonal plateletsTEM, XRDDLS, DTA, TGA, VSM413-415BaFe12019H100-200Hexagonal plateletsTEM, XRDVSM?44BaFe12019H<000	BaFe ₁₂ O ₁₉	Н	50-800	Hexagonal platelets	SEM, XRD, VSM	51
BaFe12O19H150-1500Hexagonal plateletsSEM, XRD, BET, VSM412BaFe12O19H150-10000Hexagonal platelets, needlesTEM, SEM, XRD, DLS, DTA, TGA, VSM50BaFe12O19H40-700Hexagonal plateletsTEM, XRD413-415BaFe12O19H100-200Hexagonal plateletsTEM, XRD52BaFe12O19/BagFegO17H<1000	BaFe ₁₂ O ₁₉	Н	200-1000	Hexagonal platelets	SEM, XRD	411
BaFe12O19H150-10000Hexagonal platelets, needlesTEM, SEM, XRD, DLS, DTA, TGA, VSM50BaFe12O19H40-700Hexagonal plateletsTEM, XRD413-415BaFe12O19H100-200Hexagonal plateletsTEM, XRD52BaFe12O19/BagFegO17H<1000	BaFe ₁₂ O ₁₉	н	150-1500	Hexagonal platelets	SEM, XRD, BET, VSM	412
BaFe12O19H40-700Hexagonal plateletsTEM, XRD413-415BaFe12O19H100-200Hexagonal plateletsTEM, XRD52BaFe12O19/Ba5Fe8O17H<1000	BaFe ₁₂ O ₁₉	Н	150-10000	Hexagonal platelets, needles	TEM, SEM, XRD, DLS, DTA, TGA, VSM	50
BaFe12O19H100-200Hexagonal plateletsTEM, XRDS2BaFe12O19/Ba5Fe8O17H<1000	BaFe ₁₂ O ₁₉	Н	40-700	Hexagonal platelets	TEM, XRD	413-415
BaFe12O19/Ba5Fe8O17H<1000Polyhedra, spheresTEM, XRD, VSM?44REFeO3/RE3Fe5O12 (RE=Er-Lu)H<80	BaFe ₁₂ O ₁₉	Н	100-200	Hexagonal platelets	TEM, XRD	52
REFeO3/RE3Fe5O12 (RE=Er-Lu)H<80SpheresTEM, XRDXRD45 α -FeM10-100SpheresTEM, XRD, EELS, AGM, MS62FeM2-15SpheresHRTEM, SAD63FeM5-150NeedlesTEM, XRD, SAD, VSM355FeM<5	BaFe ₁₂ O ₁₉ /Ba ₅ Fe ₈ O ₁₇	Н	<1000	Polyhedra, spheres	TEM, XRD, VSM?	44
α-Fe M 10–100 Spheres TEM, XRD, EELS, AGM, MS 62 Fe M 2–15 Spheres HRTEM, SAD 63 Fe M 5–150 Needles TEM, XRD, SAD, VSM 355 Fe M <5	REFeO ₃ /RE ₃ Fe ₅ O ₁₂ (RE=Er-Lu)	Н	<80	Spheres	TEM, XRD	45
Fe M 2–15 Spheres HRTEM, SAD 63 Fe M 5–150 Needles TEM, XRD, SAD, VSM 355 Fe M <5	α-Fe	M	10–100	Spheres	TEM, XRD, EELS, AGM, MS	62
Fe M 5–150 Needles TEM, XRD, SAD, VSM 355 Fe M <5	Fe	М	2-15	Spheres	HRTEM, SAD	63
Fe M <5 Spheres TEM, XRD, optical absorption, VSM, SQUID 416 α-Fe M 50–150 Spheres TEM, XRD, VSM? 417 α-Fe M 20–1000 Spheres, needles TEM, XRD, VSM? 418, 419 α-Fe (β-FeOOH) M 10–200 Polyhedra, spheres, needles TEM YEM 420	Fe	M	5-150	Needles	TEM, XRD, SAD, VSM	355
α-Fe M 50–150 Spheres TEM, XRD, VSM? 417 α-Fe M 20–1000 Spheres, needles TEM, XRD, VSM 418, 419 α-Fe (β-FeOOH) M 10–200 Polyhedra, spheres, needles TEM XRD, VSM 420	Fe	М	<5	Spheres	TEM, XRD, optical absorption, VSM, SOUID	416
α-Fe M 20–1000 Spheres, needles TEM, XRD, VSM 418, 419 α-Fe (β-FeOOH) M 10–200 Polyhedra, spheres, needles TEM 420	α-Fe	м	50-150	Spheres	TEM, XRD, VSM?	417
α-Fe (β-FeOOH) M 10-200 Polyhedra, spheres, needles TEM 420	α-Fe	M	20-1000	Spheres, needles	TEM, XRD, VSM	418, 419
	α-Fe (β-FeOOH)	М	10-200	Polyhedra, spheres, needles	TEM	420

Compound*	Method*	Size, nm	Morphology	Characterisation ‡	Ref.
Fe/FeB	м	<3		TEM, XPS, BET, MS	421
Co	M	<10	Spheres	TEM, XRD, SQUID	34, 422
Co	M	5-110	Spheres	TEM, Conductivity, AGM	64
Co	M	5–10	Spheres, SA	SEM, SQUID	423, 424
β-Co	M	2-10	Spheres	TEM, STM, XRD, SAXS, SQUID	425-427
Co	M	5–12	Spheres, SA	TEM, SEM, SQUID	428
β-Co	M	<5	Spheres	TEM, XRD, SQUID	317
Co/Au (core/shell)	M	5-25	Spheres	TEM, AFM, UVvis	429
Ni	M	2-16	Spheres	TEM, XRD, SQUID	249
(Fe,Cu)	M	5-50	Spheres	TEM, XRD, EDS, Conductivity, EELS, AGM, MS, SQUID	430
FePta	M	8-10	Spheres	TEM, XRD, SQUID	431
(Fe,Cu,B)	M	5-30	Spheres	TEM, SEM, XRD, EDS, EELS, MS, AGM, SQUID	432, 433
Co ₂ B	M	2-20	Spheres	TEM, SAD, UVvis, AGM	434
FeOOH	M	<80	Needles	SEM, XRD, UVvis, Conductivity	60
MaFe ₂ O ₄ , CoFe ₂ O ₄	M	10-30	Spheres	TEM, ND, MS, SOUID	71
MnEe ₂ O ₄	M	5-10	Spheres	TEM, XRD, ND, ICP, MS, SOUID	435
MnEe ₂ O ₄	M	3-10	Spheres	TEM, XRD, SOUID	318
FeaO4	M	3-15	Spheres	TEM DSC TGA SANS SOUID	435
Fe ₂ O ₄	M	3-10	Spheres	TEM, XRD, SQUID	318
Fe ₂ O ₄	M	3-12	Spheres	TEM XRD AGM MS VSM	436
Fe ₃ O ₄	M	3-12	Spheres	TEM, XRD, VSM	437
Fe ₂ O ₄	M	5-20	opholos	TEM, XRD, AA, DLS, SOLUD	438
Fe-O. (~-FeOOH)	M	8-100	Soberes needles	TEM, XRD, BET, DSC, VSM	439
CoEe O	M	<15	opholos, nocales	TEM, XRD, DET, DOO, VOM	70
	M	2 10	Sphores	TEM, XND, ND, IOI, SQUID	219
	M	10-18	Spheres	TEM, XRD, SQUID	440
	M	2.9	Spheres	TEM, XND, EXAIS, SQUID TEM, XPD, XANES, SAVS, Conductivity, MS, AGM, SOLID	252 441 442
	M	2-0	Spheres	TEM, AND, AANES, SAAS, CONDUCTIVITY, WS, ACIW, SQUID	352, 44 1-445 444 445
	M	2-15	opheres	TEM, XND, EDS, MS, SQUID	444, 445
	M	2-0	Sphores	TEM, ARD, SAAS, EDS, SQUID	440 252 447
	111	5-35	Spheres	TEM, XED, ND, IOF, MS, SQUID	200, 447
	IVI M	5-20	Spheres		440
$O_x = PE_x O_4$		17.00	Spheres	TEM, XRD, SAD, MS	449
$CO_{1-x}RE_{x}Fe_{2}O_{4}$ (RE=Ce-Er)	IVI M	17-23	Saharaa	TEM EDG MG COLUD	450
Zn _{1-x} Fe _{2+x} O ₄	IVI M	2-0	Spheres	TEM, EDS, MS, SQUID	451
Zn _{1-x} Fe _{2+x} U ₄	M	2-50	Spheres	TEM, XRD, DES, BET, ICP, SQUID	452
Mn _{1-x} Zn _x Fe ₂ O ₄	M	25-130	Spheres	TEM, XRD, BET, PCS	65
Mn _{1-x} Zn _x Fe ₂ O ₄	M	3-1000	Aggiomerates	SEM, XRD, BET, DTA, IGA	453
Co _{1-x} Zn _x Fe ₂ O ₄	M	<7	Spheres	TEM, SAD, EDS, AGM, FMR, SQUID	454, 455
NI _{1-x} Zn _x Fe ₂ O ₄	M	20-150	Spheres	TEM, XRD, BET, PCS	65
γ-Fe ₂ O ₃	M	3–12	Spheres	TEM, XRD, AGM, MS, VSM	436
γ-Fe ₂ O ₃	Μ	4-20	Spheres	TEM, SEM, XRD, MS, SQUID	456
γ-Fe ₂ O ₃ /Fe ₃ O ₄	М	2-14	Spheres	TEM, XRD, VSM	457
SrFe ₁₂ O ₁₉	М	9–120	Hexagonal platelets	TEM, XRD, BET, DTA, TGA, VSM	21
SrFe ₁₂ O ₁₉	M	65–1000	Hexagonal platelets, agglomerates	TEM, XRD, BET, DTA, TGA, FTIR, MS, VSM	73
SrFe ₁₂ O ₁₉	M	3-100		TEM, XRD, DTA, TGA, SQUID	458 51

Compound*	Methodt	Size, nm	Morphology	Characterisation:	Ref.
BaFe ₁₂ O ₁₉	М	3–15		TEM, XRD, VSM	66
BaFe ₁₂ O ₁₉	M	5-100	Spheres	TEM, XRD, DTA, TGA, VSM	459
Co[Fe(CN) ₅ NO]	M	22-31	Polyhedra	TEM, FTIR	66
Cra[Cr(CN)a]2 H2O	M	15-200	Polyhedra	TEM, FTIR	66
Co4[Fe(CN)e]4	M	12-22	Polyhedra	TEM, FTIR	66
Co/PVP	T(OM)	<2	Spheres	TEM, HRTEM, SOUID	74
Co	T(OM)	3-5	Spheres SA	HRTEM WAXS SOUID	93
	(OM)	17×10	rods		00
Ni/PVP	T(OM)	<5	Spheres, SA	TEM, EELS, FTIR, EDS	460
Ni/PVP	T(OM)	<5	Spheres, SA	HRTEM, WAXS, SQUID	85
Ni	T(OM)	4 × 15	Rods	TEM, SQUID	92
Ni	T(OM)	10-15	Bods	TEM, SQUID	93
CoPt. CoPt ₂ . Co/Pt (core/shell)	T(OM)	<10	Spheres	TEM, SOUID	96
Co.Pt. /PVP	T(OM)	1-5	Spheres	TEM, ETIR, WAXS, SOULD	88
CoO. Co.O./PVP	T(OM)	5-12	Spheres	TEM, HRTEM, WAXS, SOUID	75
12-Ee ₂ O ₂	T(OM)	6-7	Spheres	TEM XBD	91
CoEo-O-	T(OM)	4_9	Spheres SA	TEM, XHD SOUID	09
SrEero Ore re	T(OM)	200_500	Spheles, SA	YPD DTA TGA ETIR ER	461
En	T(CO)	5.9	Sphores	TEM SOULD	401
	T(CO)	2 11	Needles	TEM, SQUID	90
	T(CO)	<100	Cohoros	TEM DOG IOD ETID NMD COLUD	02
Fe/polymer (core/snell)	T(CO)	< 100	Spheres	TEM, DSC, ICP, FTIR, NMR, SQUID	322
$re, \gamma re_2 O_3$	T(CO)	10-15	Spheres		97
0,000	T(CO)	4-0	Spheres	TEM, EELS	80
0	1(00)	50-100	Spheres	TEM, SQUID	94
Co	T(CO)	5-12	Spheres	IEM	462
Co	T(CO)	~12	Spheres	TEM, SQUID, FMR	463
Co, <i>ε</i> -Co	T(CO)	3–17	Spheres, rods, cubes, SA	TEM, XRD, EELS, HRTEM	78, 79
Co, e-Co	T(CO)	8–12	Spheres, discs	TEM, XRD, HRTEM, SQUID	89
Co/PS	T(CO)	5–30	Agglomerates	TEM, FTIR	83
Co/HPS	T(CO)	2–15	Spheres	TEM, XRF, FMR	81
ε-Co/TOPO	T(CO)	4–25	Spheres, rods, SA	TEM, XRD	77
ε-Co/TOPO	T(CO)	15-25	Spheres, polyhedra	TEM, XRD	76
MnO	T(CO)	5–10	Spheres	TEM, XRD, SQUID	464
β-Fe ₂ O ₃ , γ-FeOOH	T(CO)	~30	Spheres	TEM, XRD, XPS, FTIR	465
Fe	UV	2-15	Chains	STM, ESR	198
Fe/PPO	S	1-12	Spheres	HRTEM, SQUID	466
Fe/SiO ₂	S	3-8	Agglomerates	TEM, XRD, DSC, TPD, TPR	102
(Fe.Co)	Ū.	10-20		,,	
Fe/Thiol	S	3-25	SA monolavers	AES, XRD, XANES, XPS, DSC, TGA, FTIR, MS	105, 106, 111
Fe/PVP	s	3-8	Spheres	TEM. SOUID	101
Fe amorphous	S	<30	Spheres	TEM XBD TGA DSC SOULD	99 467
Fe Co (Fe Co)	ç	2_20	Spheres	TEM XRD DSC	100
Co. (18,00)	9	5-10	Spheres	TEM FTIR SOUID	469
00	0	30, 200	Platalata	TEM SAD Lorentz microscony	100 = 0
00	5	30-200	riatelets	TEM, SAD, Lorentz microscopy	108 52

Compound*	Method†	Size, nm	Morphology	Characterisation ‡	Ref.
Ni	S	5-20	Spheres	TEM, XRD, TGA, DSC, SQUID	109
Ni/SiO ₂	S	10-50	Spheres	TEM, AFM	107
(Fe.Co)	S	<10	Spheres	TEM, SANS, DSC	103
(Fe Ni)	ŝ	<25	Agglomerates	TEM XRD TGA DSC BET MS SOUID	104
(Co Ni)	ŝ	<10	SA monolavers	TEM SEM XRD TGA BET VSM	110
Fee O /PVA	ŝ	12-20	Spheres	TEM AEM XRD DSC TGA MS SOLID	114
Fe ₂ O ₄	S	<20	Spheres	TEM XRD TGA MS SOUID	116
Fo-O-	9	20_80	Bods	TEM YED TGA CHN MS VSM	110
Fo O	0	7 11 2 17 21	Needles	TEM SEM VED MS VSM	119
$c_3 O_4, r = c_2 O_3$	0	5 20	Bolybodro	TEM, SEW, AND, MS, VSW	115
	0	0-30 < 05	Agglemerates	TEM VED BET ESP TOA DOO	110
	5	<20	Aggiomerates	TEM, XRD, BET, ESR, TGA, DSC	112 117
Fe2O3/UDA/UPA/DSA/UTS	5	5-25	Spheres	TEM, XRD, FTIR, EPR, TGA, MS, SQUID, VSM	113, 117
$M_{1-x}P_x$ (M=Fe,Co,NI)	SG	2-10	Hexagonal platelets	TEM, XRD	469
Fe/SiO ₂	SG	<10	Agglomerates	TEM, XRD, MS, VSM	134
(Ni/Pd)/PVP	SG	1–5	Spheres	HRTEM, XRD, XPS, VSM	108
Fe ₂ O ₃ /SiO ₂	SG	5–15 c	Spheres	TEM, Fluorescent microscopy	470
Fe ₃ O ₄ /SiO ₂		2–100 s			
CoFe ₂ O ₄	SG	10–50		XRD, MS, VSM	121
Co _{0.9} Mn _{0.1} Fe ₂ O ₄	SG	10-50		TEM, XRD, MS, VSM	123
Co _{1-x} Cr _x Fe ₂ O ₄	SG	5-20	Spheres	TEM, XRD, ICP, VSM	124
CoBio 1Fe1.9O4	SG	10-80		AFM, XRD, RBS, TGA, MS, VSM	125
CoGdo Fe1.004	SG	11-30		XRD, MS, VSM	127
CoNdo, 1Fe1.9O4					
Co _{1-v} Zn _v Fe ₂ O ₄	SG	10-90	Agglomerates	SEM, XRD, MS, VSM	128
CoYo Fe to O	SG	6-30	, iggioinioi dio o	XBD, MS, VSM	126
CollactEeroOr	00	0.00			.20
NiFe-Q./SiQ.	SG	5-20	Andomerates	XBD TGA FTIB ESB MS VSM	136
NiFe-O	SG	5-30	Spheres?	TEM YED DTA BET SOUID	122
Nil 6204	80	40.50	Agglomoratos	TEM, XRD, DTA, EER, ACRorm	471
Nio 250 00.252 No.5 Pe204	50	40-00	Aggiornerates	SEM VED ACCOM	471
NI0.5ZH0.5F02O4/WQ25IO4	30	100-200	Aggiornerates	JEM, XRD, ACFOIN	472
α-Fe ₂ O ₃	50	20-00	Spinales, spheres	TEM, XHD, SAXS	473
∞-Fe ₂ O ₃	50	50-3300	Spheres, platelets	TEM, SEM, XRD, ICP, EDX, FTIR, UVVIS	4/4
Fe ₂ O ₃ /SIO ₂	SG	9-50	Aggiomerates	TEM, ESR, BET	135
Bare ₁₂ O ₁₉	SG	100-250	Polynedra	TEM, XRD, VSM	475
Ba ₄ Co ₂ Fe ₃₆ O ₆₀	SG	10–100	Spheres, cubes	TEM, XRD, XPS, BET, VSM	131
BaFe ₁₂ O ₁₉	SG	80-400	Hexagonal platelets	TEM, XRD, VSM	476
BaFe ₁₂ O ₁₉	SG	10-25	Platelets	TEM, XRD, TGA, DTA, SQUID, VSM	477
Ba _{1-x} Sr _x Fe ₁₂ O ₁₉	SG	80-85	Hexagonal platelets	SEM, XRD, MS, VSM	129
BaZnCoFe ₁₆ O ₂₇	SG	5-500	Spheres	TEM, XRD, VSM	130
La _{0.67} Ca _{0.33} MnO ₃	SG	30-60	Agglomerates	TEM, XRD, TGA, XPS, FTIR, VSM	133
Y ₃ Fe ₃ O ₁₂	SG	30-4520	Agglomerates	TEM, SEM, XRD, VSM, SQUID	132
Fe, Ni, Co, (Fe,Co), (Fe,Cu), (Co.Cu)	P	5-50	Spheres	TEM, SEM, XRD	149, 158
Fe, (Fe,Co), (Fe,Ni), (Co,Ni,Fe)	P	5-250	Spheres	SEM, XRD, VSM	141
Co	P	~ 1200	Agglomerates	SEM, XRD, FMR	166
Co	P	25-150		TEM, XRD, CHN, SOUID	E 0171
Co/Mica	P	1-500	Agglomerates	SEM, XRD, UVvis, IR	53163

Compound*	Methodt	Size, nm	Morphology	Characterisation ‡	Ref.
Co, Pt, CoPt, CoPt ₃	P	1–3	Spheres	TEM, XRD	160
Co/Ni/LDH	P	5-20	Turbostratic aggregate	TEM, XRD, TGA, DTA, FTIR, UV-NIR	165
Co, Ni, (Co,Ni)/PVP	P	100-600	Spheres	SEM, XRD, TGA, VSM	152
Co, (Co,Ni), (Co,Ni,Fe)	P	30-1000	Spheres	SEM, XRD, EDS. FMR, ACPerm	143
Ni, Co	P	20-500	Spheres	TEM, XRD	169
Ni/montmorillonite	P	8-45	Spheres	HRTEM, XRD, VSM	161
Ni/PVP	P	5-2000	Spheres	SEM, XRD, FTIR, TPD	151
(Fe,Co)	P	~20	Spheres	TEM, XRD, EELS, ACPerm	150
(Ni,Co)	P	200-700	Spheres	SEM, XRD, TGA	156
(Ni,Co)	P	200-2000	Spheres	SEM, XRD, VSM, Permeability	139, 140
(Ni.Co)	P	150-700	Spheres	SEM, XRD, TGA	157
(Ni.Co)	P	210-260	Spheres	TEM, SEM, XRD, EDS, Microwave permeability	144
(Ni.Co)	P	60-500	Spheres	TEM, XRD	148
(Ni.Co)	Р	25-600	Spheres	SEM, XRD, WAXS, VSM	167
(Ni.Co)	P	200-500	Spheres	SEM, XRD, WAXS, VSM	478
(Fe.Ni)	P		6,	XRD, TGA, FTIR, VSM	479
(Ni.Co). (Fe.Ni)	P	200-500	Spheres	TEM, XRD	142
(Ni.Co), (Fe.Ni.Co)	P	25-2000	Spheres	TEM, SEM, ACPerm	145
(Ni.Co), (Fe.Ni.Co)	P	20-40	Spheres	TEM, SEM, SQUID, ACPerm	146
(Ni Co) (Fe Ni Co)	P	25-250	Spheres	TEM, EMB, ACPerm	147
(Ni Co) (Fe Ni Co)	P	25-3000	Spheres	SEM XRD XRE TGA GPC TPD/MS SOUID ACPerm	164
(Ni Pd)/PVP	P	35-65	Spheres	TEM XRD XPS TGA	480
(Co Cu)	P	20-30	Spheres	TEM XRD NMR EXAES VSM	137 138
Co-FeO	P	4_8	Spheres	TEM XRD XANES MS DCSus	159
α-Ee₀Ω₀	P	50-100	Spheres	SEM XRD FTIR	481
14-16203	P	2_8	Spheres	TEM XRD FTIR	173
1-FeaOa	P	80-100	Spheres	SEM XRD DRS	153 155
Fe-O- CoO	P	30-300	Spheres	SEM YRD	154
Co	ED	3_5	Templated nanowires	TEM HRTEM VSM	177
00	ED	~ 200	Templated nanowires	SEM XRD CV VSM	178
00	ED	40-50	Nanowires	TEM EMB SOULD	201
	ED	19.79	Tomplated papewires	HPTEM TEM YPD VSM	194
Ni	ED	~6	Templated nanowires	TEM	186
NI	ED	1_20	Wiros	TEM	202
Ni	ED	25_30	Wires		202
NI	ED	50 100	Sphores	SEM SQUE	106
Ni Co	ED	19 500	Tompleted papeuires	TEM SEM SOUID VSM	170 195
Ni, Co	ED	35 500	Templated nanowires	MEM SOLID	19, 100
NI, CO	ED	<70	Templated nanowires	TEM Conductivity	102
N	ED	20,600	Sebores	SEM TEM OV	100
Ni (Dd Eo)	ED	20-000	opheles		194
	ED	- 19	Tomplated perswires	TEM SEM VED VSM	170
CulCo Fo Ni Co	ED	~ 10	Wiree	TEM STEM VOD EELS EDAV	1/0
Cu/CO, Fe20NI80, CO	ED	5-10	Wires	TEM, STEW, AND, EELS, EDAX	200
COPT, FEPT	ED	25-100	Wires	CEM, XED, VOM	183
COPT	ED	40-60	wires	SEM, XRD, VSM	5482

Compound*	Methodt	Size, nm	Morphology	Characterisation‡	Ref.
Fe, Fe ₂ O ₃ , Fe ₃ O ₄	ED	4-12	Wires	TEM, VSM, SQUID	483
Fe ₂ O ₃ , NiO, Co ₃ O ₄ , CoFe ₂ O ₄	ED	2-30		TEM, XRD, DLS, BET	189
SrFe _w O _z	ED	2-50	Agglomerates	SEM, XRD, ICP, SQUID	192
Fe, Ni, (Co,Ni)	EC	10-10000	Agglomerates	TEM, SEM, XRD, XRF, MS, SQUID	195
α-Fe, γ-Fe ₂ O ₃ , Fe ₃ O ₄	EC	9-55		XRD, MS	249
Mn _x Zn _y Fe _z O _w	EC	20-2000		SEM, XRD, ICP-MS, SQUID	193
γ-Fe ₂ O ₃	EC	1-25	Agglomerates	TEM, XRD, FTIR, BET, Raman, MS, SQUID	191
α-Fe, Co, Ni, FePt	MSP	6-10	Spheres, SA	HRTEM, WAXS, VSM, SQUID	211
ε-Co, hcp Co, mt-fcc Co	MSP	2-10	Spheres, SA	HREM, WAXS, SAXS, XRD, SQUID	206
(Fe,Pt)	MSP	2-5	Spheres, SA	TEM, PEELS, ICP, RBS, SQUID	3, 207
FePt	MSP	2-50	Spheres, triangular platelets	TEM, SEM, XRD	218
FePt/Fe ₃ O ₄	MSP	2-10	Spheres, SA	HRTEM, XRD, VSM, SQUID	214
FePt (L1 ₀)	MSP	3-6	Spheres, SA	HRTEM, XRD, SQUID	208, 213, 344
FePt (L1 ₀)	MSP	3–10	Spheres, SA	HRTEM, EXAFS, SQUID	215
FePt (L1 ₀)	MSP	2-8	Spheres, SA	TEM, SQUID	216
FePt (L1 ₀)	MSP	2-6	Spheres	TEM, XRD, RBS, XPS, MS	484
FePt (L1 ₀)	MSP	1-4	Spheres, SA	TEM, VSM, SQUID	209
FePt (L1 ₀)	MSP	2-5	Spheres, SA	TEM	210
FePt (L1 ₀)	MSP	3-5	Spheres	TEM, XPS, MS, VSM	212
FePt/Pt–Fe ₂ O ₃	MSP	8-12	Spheres	TEM, XPS	223
Pt-Fe ₂ O ₃	MSP	~10	Spheres	TEM, XRD, XPS	222
CoPt ₃ /ACA	MSP	1-50	Spheres, Wires	HRTEM, TEM, SEM, XRD, ICP, AES	221
FePd, CoPt, (Fe,Co)Pt (L1 ₀)	MSP	2-11	Spheres, SA	TEM, SEM, XRD, AGM, VSM	217, 220
(Fe ₄₉ Pt ₅₁) ₈₈ Ag ₁₂ (<i>L</i> 1 ₀)	MSP	2-5	Spheres	TEM, XRD, VSM	485
Mn ₅₂₋₅ Pt ₄₇₋₅	MSP	~3	Spheres	TEM, XRD, XRF, SQUID	219
(Sm,Co), (Nd,Fe)	MSP	~9	Clusters	TEM, SQUID	204
Fe ₃ O ₄	MSP	3–20	Spheres, SA	TEM, XRD	486

*ACA: 1-adamentanecarboxylic acid; DSA: dodecylsulphonic acid; HPS: hyper-cross-linked polystyrene; LDH: layered double hydride; mt-fcc: multi-twinned face centred cubic; OPA: octylphosphonic acid; OTS: octadecyltrichlorosilane; PPO: poly(dimethylphenylene oxide); PS: polystyrene; PVA: polyvinyl alcohol; PVP: polyvinylpyrrolidone; RE: rare earth; SDS: sodium dodecylsulphate; TOPO: trioctylphospheneoxide; UDA: 10-undecanoic acid. {EC: electrochemical; ED: electrodeposition; H: hydrothermal; HR: hydride reduction; PPC: precipitation; M: micellar or microemulsion; MSP: multisynthesis processing; P: polyol; S: sonolysis; sol-gel: T(CO): thermolosis carbonvl decomposition: T(OM): thermolosis organometallic; UV: photolysis. SG: {AA: atomic absorption spectroscopy; ACPerm: alternating current permeametry; ACSus: alternating current susceptometry; AES: Auger electron spectroscopy; AFM: atomic force microscopy; AGM: alternating gradient magnetometry; BET: Brunauer-Emmett-Teller (a method of measuring surface area); CHN: carbon-hydrogen-nitrogen analysis; CV: cyclic voltammery; DLS: dynamic light scattering; DRS: diffuse reflectance spectroscopy; DSC: differential scanning calorimetry; DCSus: direct current susceptometry; DTA: differential thermal analysis; EDAX: energy dispersive analysis of X-rays; EDX/ EDS: energy dispersive X-ray spectroscopy; EELS: electron energy loss spectroscopy; EPR: electron paramagnetic resonance; ESR: electron spin resonance; EXAFS: X-ray absorption fine structure (spectroscopy); FB: Faraday balance; FMR: ferromagnetic resonance; FTIR: Fourier transform infrared spectroscopy; GPC: gas phase chromatography; HRTEM: high resolution transmission electron microscopy; ICP: inductively coupled plasma; IR: infrared spectroscopy; MFM: magnetic force microscopy; MS: Mo"ssbauer effect spectroscopy; ND: neutron diffraction; NMR: nuclear magnetic resonance; PCS: photon correlation spectroscopy; PEELS: parallel electron energy loss spectroscopy; RBS: Rutherford back-scattering spectroscopy; SAD: selected area electron diffraction; SANS: small angle neutron spectroscopy; SAXS: small angle X-ray spectroscopy; SEM: scanning electron microscopy; SQUID: superconducting quantum interference device magnetometry; STM: scanning tunneling microscopy; TMA: thermal mass analysis; TEM: transmission electron microscopy; TGA: thermal gravimetric analysis; TPD: temperature programmed desorption; TPR: temperature programmed reduction; UVVis: ultraviolet-visible spectroscopy; UV-NIR: ultraviolet-near infrared spectroscopy; VSM: vibrating sample magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption near 100 magnetometry; WAXS: wide angle X-ray spectroscopy; XANES: X-ray absorption; X-ray spectroscopy; X-ray spec spectroscopy; XRF: X-ray fluorescence; XPS: X-ray photoelectron spectroscopy; XRD: X-ray diffraction.

نتيجه گيرى

- طراحی سطح مولکولی مواد،همگنی ترکیب شیمیایی در سطح
 ملکولی، کنترل اندازه ذرات، کنترل توزیع اندازه، کنترل مورفولوژی، کنترل
 اندازه متراکم شدن،اصلاح سطح ذرات در طول سنتز و یا پس از سنتز
 - بسته به نوع وسایل موجود و کاربردی که در نظر گرفته می شود نوع
 ساخت انتخاب می گردد
 - همرسوبی ، هیدرو تر مال(آبی حرارتی)، سولو تر مال(حلالی حرارتی)، کاهش هیدرید، مایسل یا میکروامولسیون، تجزیه حرارتی(تجزیه
 آلی فلزی)، تجزیه نوری، سونو شیمی، سل ژل، الکتروشیمیایی

- 1. M. M. Miller, G. A. Prinz, S. F. Cheng and S. Bounnak: Appl. Phys. Lett., 2002, 81, (2), 2211.
- 2-M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin and V. G. Harris, **Chemically prepared magnetic nanoparticles, International Materials Reviews 2004** VOL 49 NO 3-4 125-170.
- 3. S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser: Science, 2000, 287, 1989– 1992.
- 4. http://www.fero.com/usa/ferrofluid_technology_overview.htm
- 5. http://www.cancernetwork.com/journals/oncology/o0006q.htm
- 6. http://www.gatech.edu/news-room/archive/news_releases/zhang.html
- 7. A. E. Nielsen: In 'Kinetics of precipitation', 1964, New York, Pergamon Press.
- 8. A. G. Walton: In 'The formation and properties of precipitates', (reprint edn); 1979, New York, Robert Krieger.
- 9. M. G. Lagally: Jpn J. Appl. Phys., 1993, 32, 1493.
- 10. V. K. LaMer and R. H. Dinegar: J. Am. Chem. Soc., 1950, 72, 4847.
- 11-R. H. Kodama, A. E. Berkowitz, E. J. Mcniff and S. Foner: Phys. Rev. Lett., 1996, 77, (2), 394.

polyol method

- The polyol method, in which the polyol acts as solvent, reducing agent, and surfactant, is a suitable method for preparing nanophase and micrometre size particles with well defined shapes and controlled particle sizes
- By this method, precursor compounds such as oxides, nitrates, and acetates are either dissolved or suspended in a diol, such as ethylene glycol or diethylene glycol. The reaction mixture is then heated to reflux between 180 and 199°C. During the reaction, the metal precursors become solubilised in the diol, form an intermediate, and then are reduced to form metal nuclei, which form metal particles.

polyol method

- Nanocrystalline powders such as Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Sn, Re, W, Pt, Au, (Fe,Cu), (Co,Cu), (Co,Ni), and (Ni,Cu) were also synthesised using different salt precursors by this method
- For example, nanostructured powders of Co_xCu_{100-x} were synthesized by reacting cobalt acetate tetrahydrate and copper acetate hydrate in various proportions in ethylene glycol. The mixtures were refluxed at 180–190°C for 2 h, the powders precipitated out of solution, and were subsequently collected and dried

polyol method

Fe₄₈Co₅₂ nanoparticles prepared by a polyol method (SEM)

Multisynthesis processing methods

 One of the greatest advantages of chemical routes is that they are carried out in solution. This allows a great deal of versatility and compatibility. Since many of the chemical routes use similar solvent systems, they may be interchanged for one another or carried out concurrently. Therefore, combining one or more techniques is relatively simple